Sequential development of synapses in dendritic domains during adult neurogenesis.

نویسندگان

  • Wolfgang Kelsch
  • Chia-Wei Lin
  • Carlos Lois
چکیده

During the process of integration into brain circuits, new neurons develop both input and output synapses with their appropriate targets. The vast majority of neurons in the mammalian brain are generated before birth and integrate into immature circuits while these are being assembled. In contrast, adult-generated neurons face an additional challenge as they integrate into a mature, fully functional circuit. Here, we examined how synapses of a single neuronal type, the granule cell in the olfactory bulb, develop during their integration into the immature circuit of the newborn and the fully mature circuit of the adult rat. We used a genetic method to label pre and postsynaptic sites in granule neurons and observed a stereotypical development of synapses in specific dendritic domains. In adult-generated neurons, synapses appeared sequentially in different dendritic domains with glutamatergic input synapses that developed first at the proximal dendritic domain, followed several days later by the development of input-output synapses in the distal domain and additional input synapses in the basal domain. In contrast, for neurons generated in neonatal animals, input and input-output synapses appeared simultaneously in the proximal and distal domains, respectively, followed by the later appearance of input synapses to the basal domain. The sequential formation of synapses in adult-born neurons, with input synapses appearing before output synapses, may represent a cellular mechanism to minimize the disruption caused by the integration of new neurons into a mature circuit in the adult brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis.

New neurons integrate in large numbers into the mature olfactory bulb circuit throughout life. The factors controlling the synaptic development of adult-born neurons and their connectivity remain essentially unknown. We examined the role of activity-dependent mechanisms in the synaptic development of adult-born neurons by genetic labeling of synapses while manipulating sensory input or cell-int...

متن کامل

Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis.

Adult neurogenesis, the process of generating mature neurons from adult neural stem cells, proceeds concurrently with ongoing neuronal circuit activity and is modulated by various physiological and pathological stimuli. The niche mechanism underlying the activity-dependent regulation of the sequential steps of adult neurogenesis remains largely unknown. Here, we report that neuronal activity de...

متن کامل

Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation.

Reelin, an extracellular protein essential for neural migration and lamination, is also expressed in the adult brain. To unravel the function of this protein in the adult forebrain, we generated transgenic mice that overexpress Reelin under the control of the CaMKIIalpha promoter. Overexpression of Reelin increased adult neurogenesis and impaired the migration and positioning of adult-generated...

متن کامل

P 67: The Role of Neuroinflammation in Dysfunction of Adult Hippocampal Neurogenesis

Neuroinflammation as a protective mechanism for repairing tissue damage in the central nervous system (CNS), has been classified into two types: acute and chronic. It is characterized by the activation of microglia and astrocytes and the increase levels of different chemokines and cytokines. Neuroinflammation can be harmful, and it is a common pathological feature in neurodegenerative and psych...

متن کامل

Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis.

GABAergic transmission regulates adult neurogenesis by exerting negative feedback on cell proliferation and enabling dendrite formation and outgrowth. Further, GABAergic synapses target differentiating dentate gyrus granule cells prior to formation of glutamatergic connections. GABA(A) receptors (GABA(A) Rs) mediating tonic (extrasynaptic) and phasic (synaptic) transmission are molecularly and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 43  شماره 

صفحات  -

تاریخ انتشار 2008